

2024

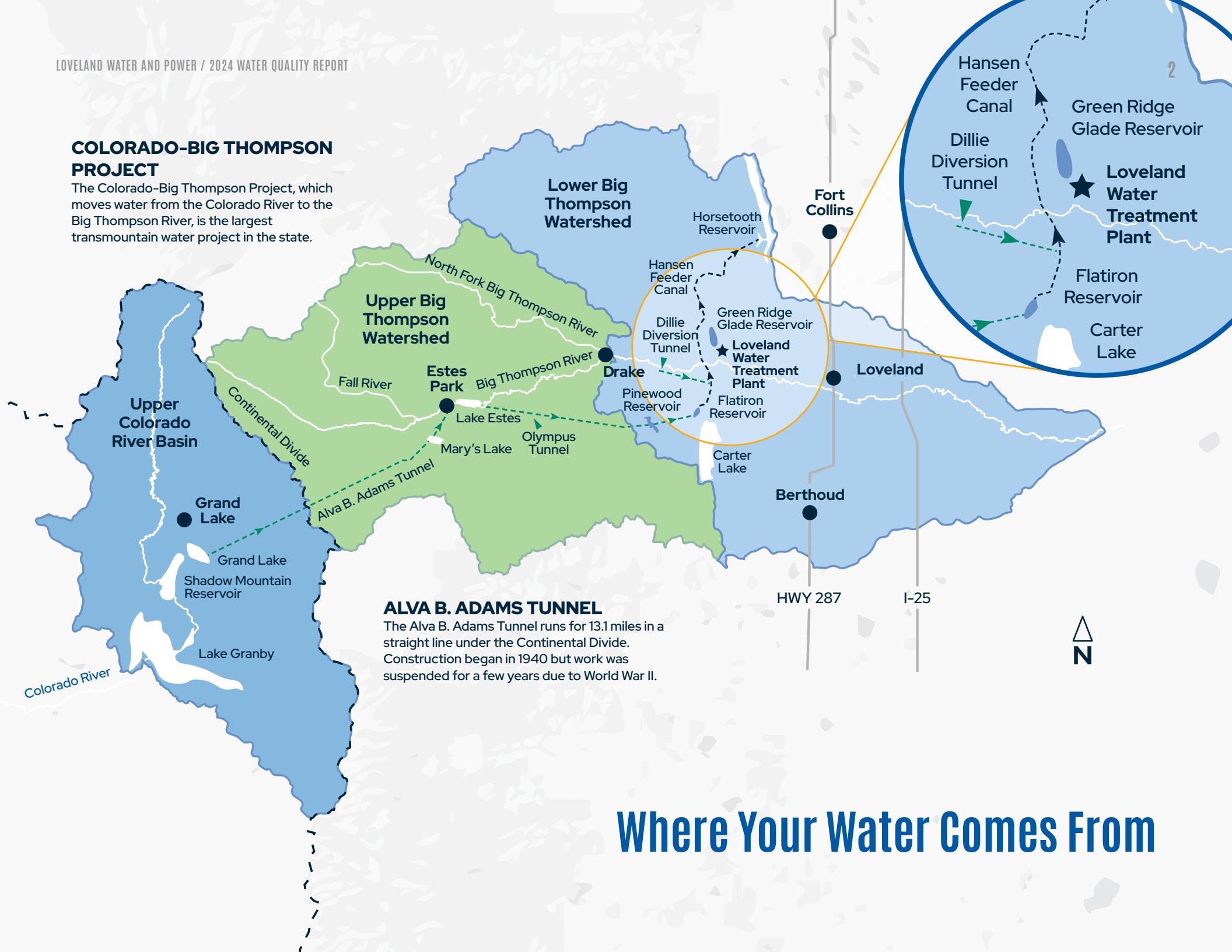
Drinking Water Quality Report

What is a Drinking Water Quality Report?

The State of Colorado requires every drinking water supplier to publish an annual document known as a Consumer Confidence Report (CCR). CCRs provide detailed information about drinking water quality, results of laboratory testing and other items of interest.

At Loveland Water and Power (LWP), our top priority is ensuring the water you use to wash your hands, bathe your children and prepare healthy meals meets all state and federal drinking water standards. The trusted experts at Loveland Water and Power deliver high quality, clean drinking water 24 hours a day, 365 days a year.

Loveland's Water System

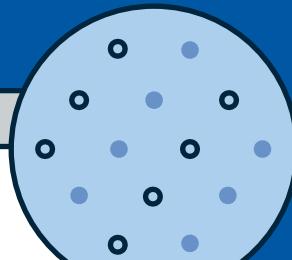

Water collected and stored in reservoirs before treatment is known as source water. LWP's source water supply comes from the Big Thompson River Basin and the Colorado River Basin via the Colorado-Big Thompson Project (CBT) and the Windy Gap Project.

Big Thompson Watershed

A watershed is an area of land containing streams and rivers that drain into a single body of water such as a larger river or lake. Natural or human impacts on the water and surrounding land affect water quality within a watershed. LWP supports the protection and improvement of Big Thompson Watershed water quality through collaborative monitoring, assessment, education and outreach. This work enables LWP to identify water quality trends and provide valuable information about protecting LWP's water sources.

COLORADO-BIG THOMPSON PROJECT

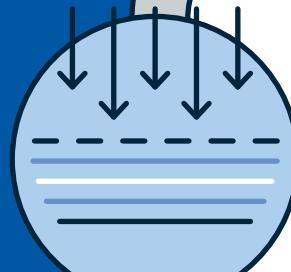
The Colorado-Big Thompson Project, which moves water from the Colorado River to the Big Thompson River, is the largest transmountain water project in the state.



The Water Treatment Process

Step 1

Coagulation


The water we collect from nature flows into large mixing bowls at our treatment plant where chemicals are added at safe amounts to cause the small particles of impurities to stick to one another, forming larger particles. This is called coagulation, which means thickening.

Step 2

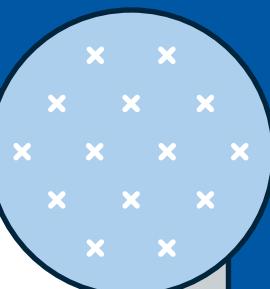
Flocculation

Over time, the larger particles become heavy enough to fall (or settle) to the bottom of the bowl where they are removed.

Loveland's water source comes from both the east and west side of the Continental Divide. The water is drawn from the Big Thompson River and Green Ridge Glade Reservoir.

Step 3

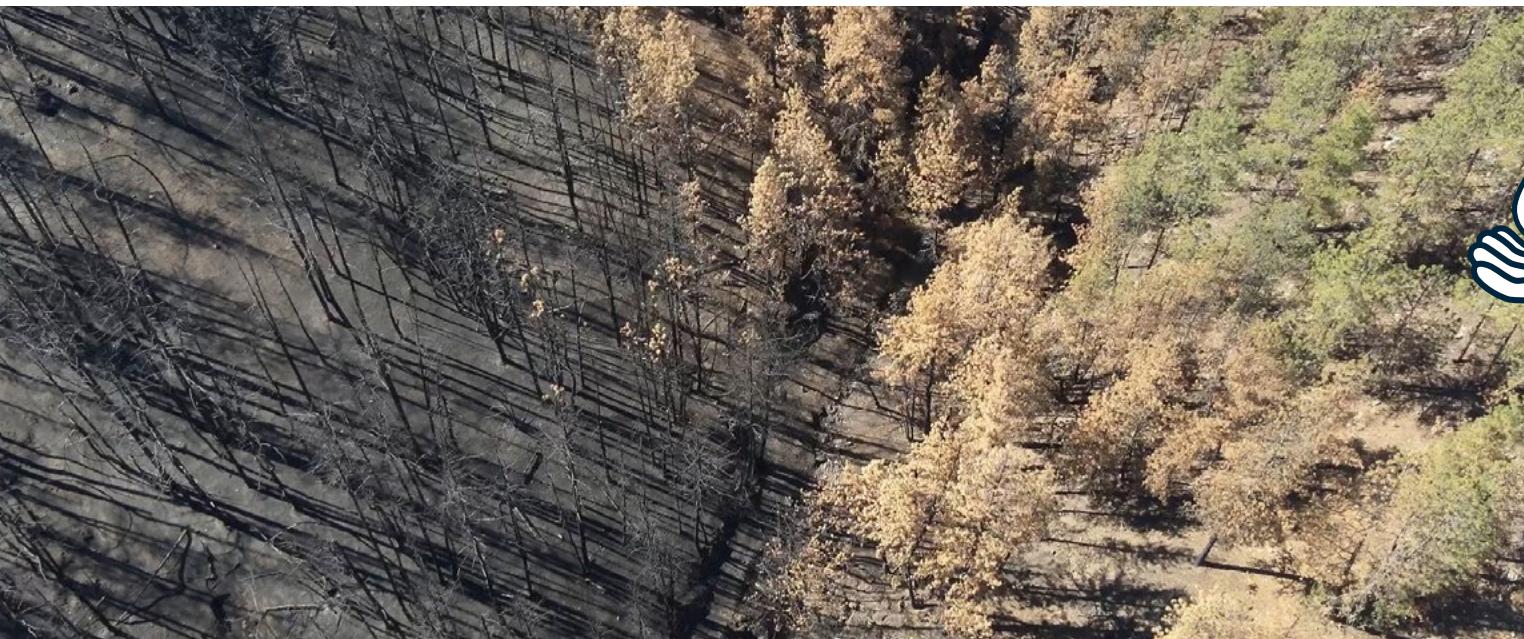
Filtration


The remaining water flows through filters made of layers of fine materials, like sand, or a combination of sand and coal. These layers stop even smaller particles of pollutants from getting through, and only very clear water is left.

Step 4

Cleaning

During the last step, bacteria and viruses that may remain in the water are removed with chlorine. Fluoride, the same thing in your toothpaste, is also added at this step to help prevent tooth decay. Another chemical, similar to baking soda, is added at a safe level to protect the pipes from corrosion as the water travels to your home.


Wildfire Recovery and Forest Management

In 2020 and 2024, the Cameron Peak and Alexander Mountain Fires affected approximately 14% of the Big Thompson Watershed, the primary source of Loveland's drinking water. Wildfires have the potential to negatively impact water quality for years after a fire.

While the effects of the Cameron Peak Fire are still noticeable, they have diminished each year. The more recent Alexander Mountain Fire burned a portion of the watershed just upstream of Loveland's Water Treatment Plant (WTP) and is expected to affect watershed water quality in 2025, especially during the spring runoff and monsoon seasons.

To mitigate the water quality impacts of wildfires, LWP continues to partner with organizations such as the Larimer Conservation District, Big Thompson Watershed Coalition, the Big Thompson Watershed Health Partnership and private landowners on forest management and tree thinning efforts. Hundreds of acres have already been thinned, with additional projects planned for the future.

LWP also partnered with the Natural Resources Conservation Service to secure an Emergency Watershed Protection Grant, which will fund projects aimed at preventing the most severe water quality impacts from the Alexander Mountain Fire.

Although the recent wildfires impacted our watershed, **they did not affect the quality of our drinking water.**

What is in My Drinking Water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants.

The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline 1 (800) 426-4791 or visiting the EPA website epa.gov/safewater.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline 1 (800) 426-4791 or on EPA's website epa.gov/safewater.

The sources of drinking water for both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs and groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. Water can also pick up physical, chemical, biological, or radiological substances and matter from animals or from human activity. These substances are also called contaminants.

Contaminants that may be present in source water include:

Microbial contaminants such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants such as salts and metals, which can be naturally occurring in the soil or groundwater, or resulting from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff and residential uses. Pesticides, in general, are any substance or mixture of substances intended for preventing, destroying, repelling or mitigating any pest. Herbicides are any chemical(s) used to control undesirable vegetation.

Organic chemical contaminants including synthetic and volatile organic compounds are by-products of industrial processes and petroleum production. These contaminants may also come from gas stations, urban stormwater runoff and septic systems.

Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

Bottled Water

In order to ensure tap water meets water quality standards, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Water from your tap in Loveland meets or exceeds all state and federal water quality standards. Bottled water sometimes comes from public water systems similar to ours. In some cases, the water comes from sources that are not as high quality as LWP's tap water. Additionally, LWP water is much less expensive. You can fill your water bottle with high quality water from your tap for less than one cent per bottle.

Disinfection of Drinking Water

LWP is dedicated to protecting public health and safety. The City of Loveland meets or exceeds federal and state regulations and guidelines by treating drinking water with chlorine to remove pathogens, including viruses such as COVID-19, before providing water to the community. For more information, visit [cdc.gov/drinking-water/about/about-water-disinfection-with-chlorine-and-chloramine.html](https://www.cdc.gov/drinking-water/about/about-water-disinfection-with-chlorine-and-chloramine.html).

Did You Know?

Loveland water **meets or exceeds** all state and federal water quality standards. In some cases, Loveland water is even **higher quality** than bottled water sources.

Monthly Water Analysis

Each month, the Water Quality Laboratory tests the drinking water for non-regulated water quality parameters that provide additional information for brewing, aquariums, hobbies and home plumbing. This table provides the annual results and information for many of these tests. For a complete list, visit lovelandwaterandpower.org/waterquality.

Additional Resources

CSU Water Quality Interpretation Tool: erams.com/wqtool

EPA-Drinking Water Regulations: epa.gov/dwstandardsregulations

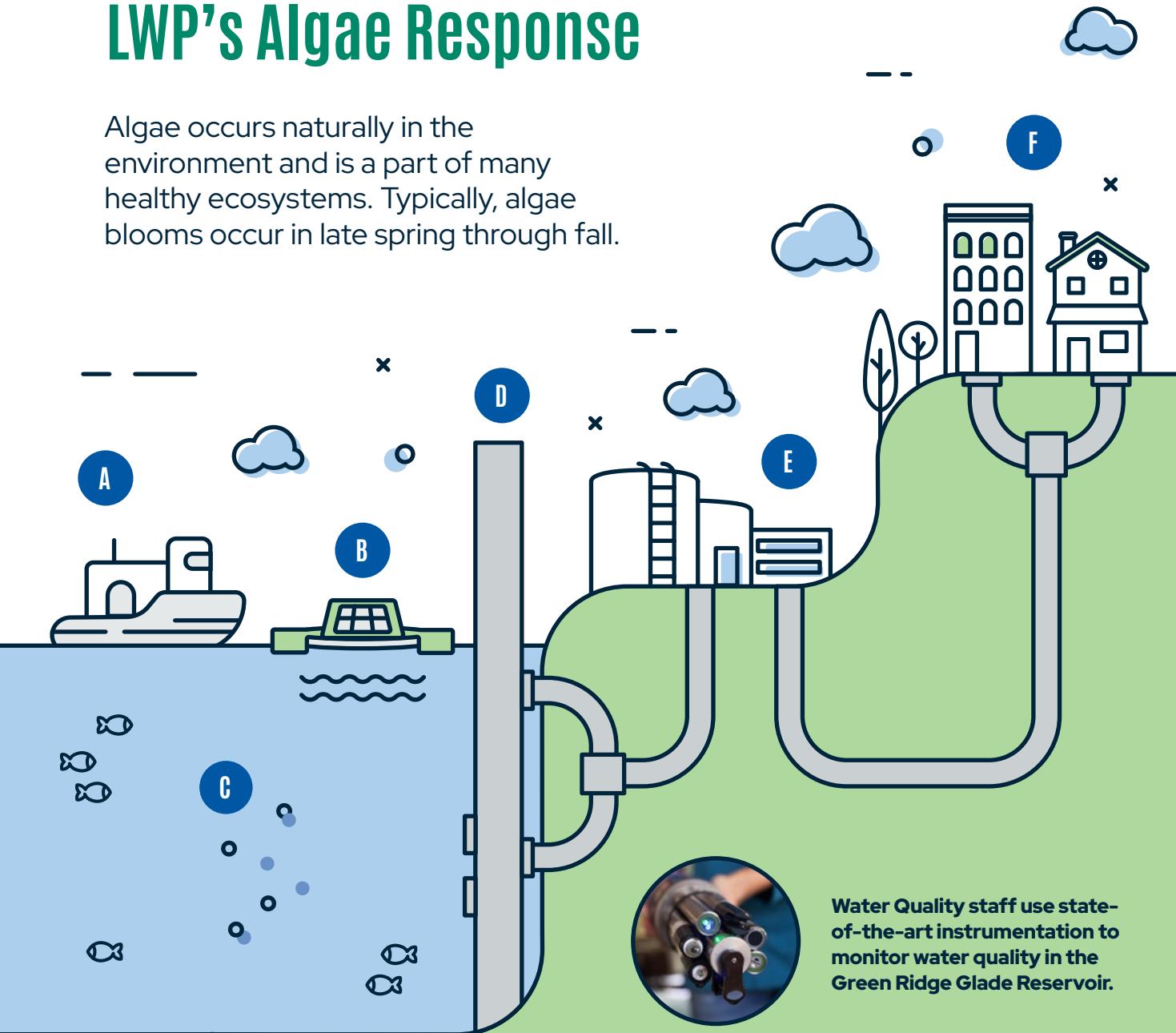
Colorado Department of Public Health & Environment (CDPHE): cdphe.colorado.gov/drinking-water

MCL: Maximum Contaminant Level (mandated by the USEPA)

SMCL: Secondary Maximum Contaminant Level (mandated by the USEPA)

Parameter	Yearly Average	Description
Alkalinity	34	The CDPHE determined facility specific levels are 20 to 60 mg/L. There is no direct health concern associated with increased alkalinity.
Aluminum	0.02	The SMCL is 0.05 to 0.2 mg/L. Levels above this can cause colored water, scaling and sedimentation.
Ammonia (as N)	Not Detected	There is no direct health concern associated with increased levels of ammonia. Concentrations greater than 1.5 mg/L can cause water odor.
Calcium	7.0	There is no direct health concern associated with increased levels of calcium. Calcium is a primary constituent of hardness.
Chloride	6.4	The SMCL is 250 mg/L. Higher levels may cause water to have a salty taste.
Chlorine, Free	1.5	The CDPHE determined facility-specific levels are 0.2 to 4.0 mg/L. Chlorine is added to the water to disinfect and prevent bacteria growth.
Chromium, Total	Not Detected	The MCL is 0.1 mg/L. Higher levels of chromium are often caused by natural deposits.
Fluoride	0.7	The SMCL is 2.0 mg/L. The MCL is 4.0 mg/L. The CDPHE Oral Health Department recommends an optimal level of 0.7 mg/L. Fluoride is added to reduce dental decay and improve public health.
Hardness	27	Calcium and magnesium are the primary components of water hardness. High water hardness may cause scaling in bathtubs, water heaters and plumbing fixtures. To convert to grains per gallon, divide the hardness value by the correction factor 17.1.
Iron, Total	0.02	The SMCL is 0.3 mg/L. Higher levels of iron may cause rusty-colored water, sedimentation, a metallic taste and/or reddish or orange staining.
Magnesium	2.1	There is no direct health concern associated with increased levels of magnesium. Magnesium is a primary constituent of hardness.

All results are in ppm (mg/L) unless otherwise noted.



Parameter	Yearly Average	Description
Manganese	0.01	The SMCL is 0.05 mg/L. Higher levels of manganese may cause black to brown-colored water, black staining and may have a bitter, metallic taste.
pH (S.U.)	7.8	The CDPHE recommended facility levels are 7.3 to 8.6. The SMCL is 6.5 to 8.5. Lower levels may be corrosive to the water system and have a bitter, metallic taste. Higher levels may give water a slippery feel and a soda-like taste.
Potassium	1.0	There is no direct health concern associated with increased levels of potassium. Potassium is an important parameter for homebrewing enthusiasts.
Silica (as SiO ₂)	2.9	There is no direct health concern associated with increased levels of silica. Typically, natural sources of water contain 1 to 100 mg/L of silica.
Specific Conductance (μS/cm)	125	There is no direct health concern associated with increased specific conductance.
Sulfate	11	The SMCL is 250 mg/L. Higher levels may give the water a salty taste.
Total Dissolved Solids	113	The SMCL is 500 mg/L. High dissolved solids may leave deposits on glass and fixtures, can cause staining or give water an undesirable salty taste.
Turbidity (NTU)	0.04	The CDPHE recommended facility limits are 0.3 to 1 NTU. The MCL is 1 NTU. Turbidity is the measure of the cloudiness of water. Higher levels may occur during hydrant flushing, pipeline replacement or valves opening and closing in specific areas of the water system.
Zinc	0.02	The SMCL is 5.0 mg/L. Higher levels of zinc may give the water a metallic taste.

All results are in ppm (mg/L) unless otherwise noted.

LWP's Algae Response

Algae occurs naturally in the environment and is a part of many healthy ecosystems. Typically, algae blooms occur in late spring through fall.

Fighting Taste and Odor Issues

On occasion, LWP customers inquire about water taste and odor issues. Most often, these issues stem from microscopic organisms known as algae that occur naturally in healthy aquatic ecosystems like the one found in Green Ridge Glade Reservoir. Although taste and odor may be unpleasant, it is harmless and there is no algae in the drinking water itself.

Staying on top of the algae issue requires continuous effort by LWP staff and water quality treatment professionals. The Water Quality Laboratory has state-of-the-art instrumentation, including gas chromatography/mass spectrometry (GC/MS), to quickly determine how much taste and odor is present. Staff use this information to employ a combination of physical and chemical processes to reduce taste and odor. In addition, the treatment plant utilizes powder-activated carbon to further remove taste and odor from the water.

During treatment, all algal matter is removed and no algae remains in the drinking water.

Source Water Monitoring and Watershed Health Surveillance

LWP's source water monitoring program has been collecting comprehensive data for over 30 years to gain a better understanding of the Big Thompson Watershed. This data has proven to be invaluable in making decisions at the Water Treatment Plant (WTP). Water quality can change rapidly in response to various extreme events, whether natural (such as heavy rain or floods) or artificial (such as oil or gasoline from automotive accidents).

LWP operates real-time monitoring stations upstream of the water treatment plant intake, allowing treatment operators to quickly respond to sudden changes in source water quality. In 2024, LWP installed an additional monitoring station specifically designed to detect potential water quality impacts from the Alexander Mountain Fire. Additionally, LWP's state-of-the-art laboratory provides critical data to operators when unexpected issues arise that may require treatment adjustments. For more information on LWP's Source Water Monitoring Program, see our *Journal AWWA* (American Water Works Association) article: doi.org/10.1002/awwa.2177.

By implementing new and innovative monitoring strategies, LWP can proactively evaluate the aquatic health of the Big Thompson River. In addition to water testing, LWP monitors macroinvertebrate communities, as a diverse insect population indicates a healthier river and watershed. LWP also uses macroinvertebrates to monitor chemicals that may impact human health, such as per- and polyfluoroalkyl substances (PFAS). Fortunately, PFAS concentrations in Loveland's source water are extremely low, so they are difficult to detect with the current testing methodology. Aquatic insects accumulate PFAS in their tissues, making even trace amounts easier to detect. This approach provides a clearer picture of which PFAS are present and at what levels.

Source Water Assessment and Protection

The Colorado Department of Public Health and Environment (CDPHE) provided a Source Water Assessment Report (SWAP) to LWP outlining our water supply. Visit cdphe.colorado.gov/swap-assessment-phase for general information or to obtain a copy of the report.

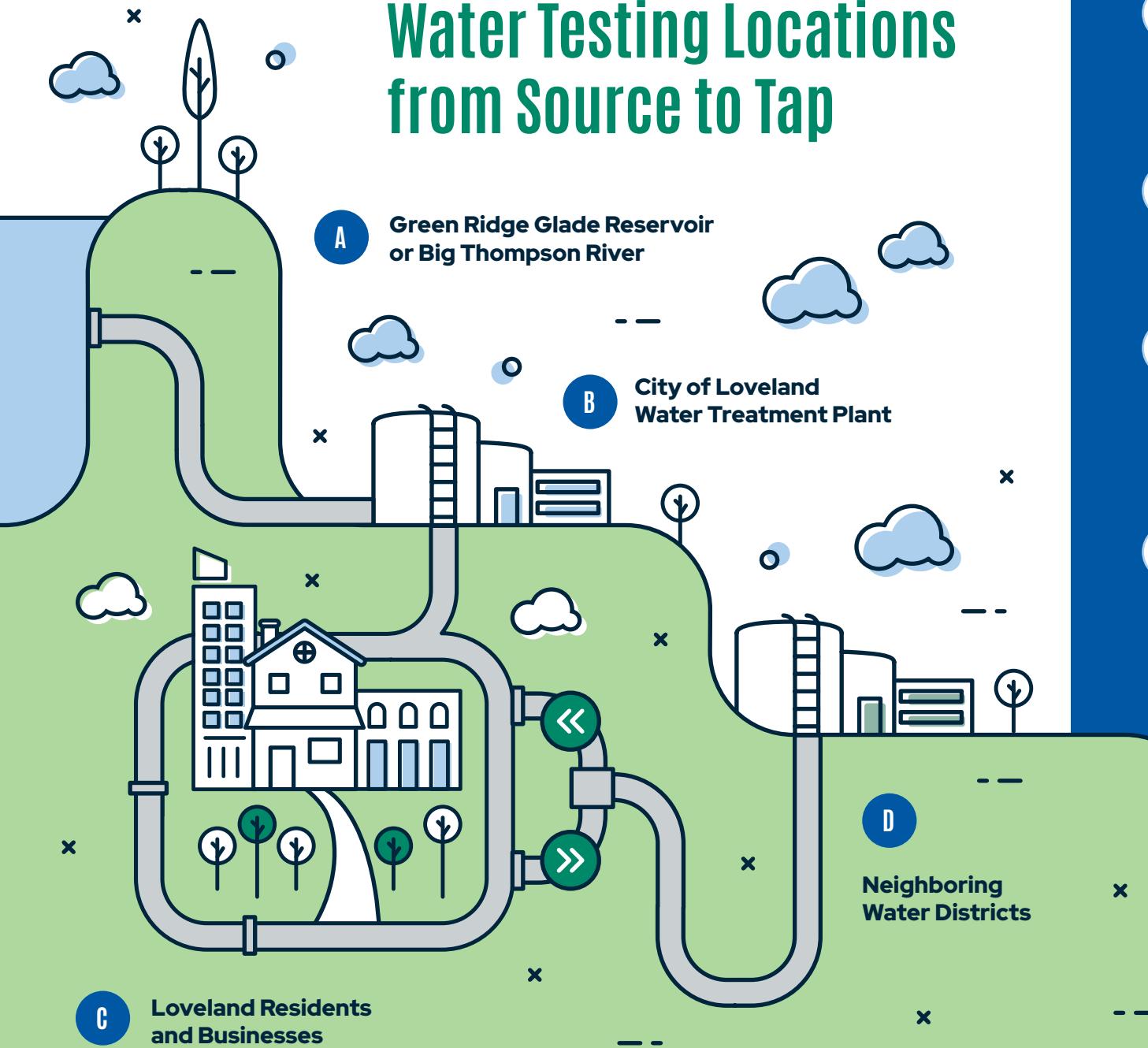
The 2004 report provides a screening-level evaluation of potential sources of contamination that could occur. That does not mean that contamination has or will occur, as some or all of these features can be common in many different watersheds. The potential sources of contamination could include: hazardous waste generators, chemical inventory/storage sites, toxic release inventory sites, permitted wastewater discharge sites, above-ground, underground and leaking storage tank sites, solid waste sites, existing/abandoned mine sites, commercial and industrial transportation, low-intensity residential and urban recreational grasses, assorted crops and forests, septic systems, oil/gas wells and road miles.

In 2021, LWP expanded upon this report to create a Source Water Protection Plan (SWPP) that contains a more detailed summary on potential threats that are specific to Loveland's drinking water such as fires, floods and algal blooms. It also includes best management practices to help reduce the risk of those threats to continue to protect the source of Loveland's high-quality drinking water. Several of these have already been implemented and efforts will continue into the foreseeable future. The SWPP was developed in coordination with CDPHE and several stakeholders from federal, state, county and local governments, as well as non-profit organizations and neighboring municipal water providers. For more information about this report visit lovelandwaterandpower.org/waterquality.

If you have any questions pertaining to the SWAP program, contact the CDPHE at (303) 692-3592 or colorado.gov/pacific/cdphe/swap-assessment-phase.

Interconnects

LWP's water system interconnects with three neighboring water systems – Little Thompson Water District, Fort Collins-Loveland Water District and Greeley, Boyd Lake Water Treatment Plant. These interconnections provide a redundant or alternate water supply in case of an emergency or during maintenance shutdowns. In 2024, LWP purchased less than 1% of its total water use from these water systems. Information on source water and the Source Water Assessment Program (SWAP) can be found in each utility's Drinking Water Quality Reports or colorado.gov/cdphe/swap-assessment-phase. If you have questions about water quality data from either district, please contact those entities directly.


- Little Thompson Water District - CO0135477, purchases water from Carter Lake Filter Plant - CO0135476. Carter Lake Filter Plant uses water from Carter Lake Reservoir. Please visit ltwd.org or call (970) 532-2096 for more information.
- Fort Collins-Loveland Water District - CO013529, purchases water from Tri Districts/Soldier Canyon Filter Plant - CO135291 and the City of Fort Collins - CO0135291. Soldier Canyon Filter Plant and the City of Fort Collins use water from the Poudre River and Horsetooth Reservoir. Please visit fclwd.com/who-we-are/water-quality/ or call (970) 226-3104 for more information.
- Greeley, Boyd Lake Water Treatment Plant - CO0162321, uses water from Boyd Lake and Lake Loveland: greeleygov.com/services/ws/about-our-system/our-water-system or call (970) 350-9811 for more information.

Water quality data from communities throughout the United States are available here:

- EPA Drinking Water Data and Reports: epa.gov/CCR/CCR-information-consumers
- CDPHE Primary Drinking Water Regulations: cdphe.colorado.gov/drinking-water

Water Testing Locations from Source to Tap

A Source Water

Water is tested prior to entering the Water Treatment Plant (WTP) to ensure the treatment plant will provide fresh, high quality drinking water.

B Before Leaving the Plant

Prior to sending the water to your home or business, we test to confirm that our treatment process was effective.

C Sampling Ensures High Water Quality

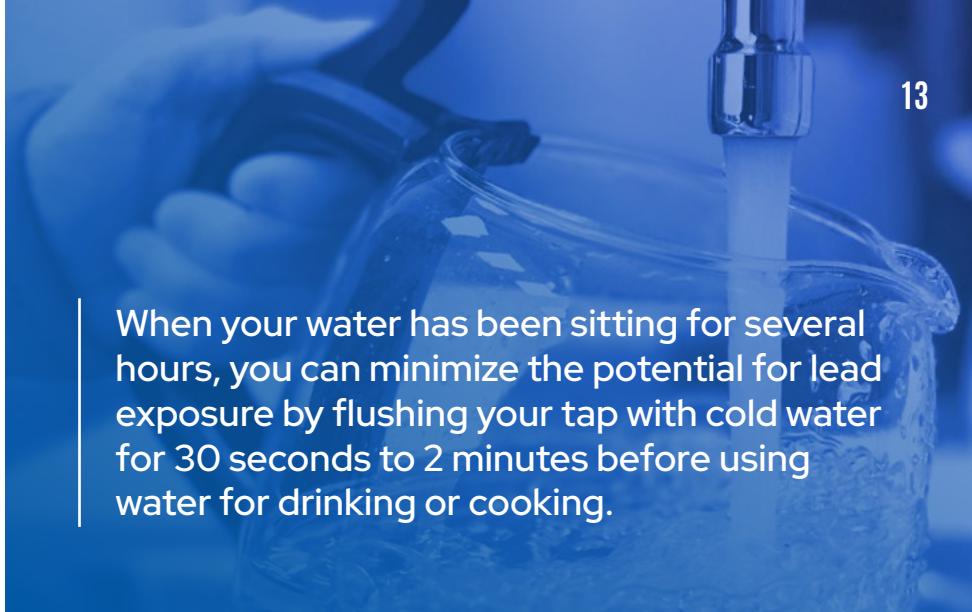
Water is tested frequently at various points in the distribution system to ensure water is free from lead and copper, as well as many other contaminants that could make people sick.

D Water Purchases and Sales

LWP works closely with neighboring water districts to meet local demand. Whether entering or leaving our system, our water quality experts test frequently to ensure all state and federal water quality standards are met.

Parameters Monitored

Lead and Copper


In 1991, the EPA issued the Lead and Copper Rule (LCR) which limits the amount of lead and copper allowed in drinking water. Lead is rarely detected in the water being delivered to residential homes. Corrosion of home and building plumbing is typically the source of lead and copper in drinking water. Customers can help protect themselves and their family from lead by identifying and removing lead plumbing materials and taking additional steps to further reduce risk. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water.

Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead or galvanized service line that requires replacement, you may need to flush your pipes for a longer period. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. Follow the instructions provided with the filter to ensure the filter is used properly. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at [epa.gov/safewater/lead](https://www.epa.gov/safewater/lead).

LWP regularly samples homes with the highest potential for lead and copper contamination, following EPA guidance criteria. These results help ensure regulatory compliance and maintain proper corrosion control within the distribution system. Loveland's Water Quality Laboratory is equipped with state-of-the-art equipment for this specialized testing. If you are concerned about lead in your water and wish to have your water tested, contact Loveland Water and Power at (970) 962-3479 or email lead@lovelandwaterandpower.org.

The EPA recently implemented two updates to the LCR, known as the Lead and Copper Rule Revisions (LCRR) and Lead and Copper Rule Improvements (LCRI). In addition to continuing to require lead and copper monitoring in residential homes, the revised rule enhances protections for children and communities by increasing monitoring at schools and childcare facilities to reduce the risk of lead exposure.

These revisions also require water systems to determine the amount of lead-containing material in their distribution system. Loveland has more than 470 miles of water lines and over 28,000 service connections. Starting in 2020, LWP

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap with cold water for 30 seconds to 2 minutes before using water for drinking or cooking.

began visually inspecting these service lines through customer surveys, reviewing records and potholing. These inspections will continue into 2026. To view a map of LWP's service line inventory, please visit our website at lovewp.org/lead-reduction. LWP is dedicated to ensuring that water consumed at the tap continues to meet or exceed all state and federal monitoring requirements.

The current Lead and Copper Action Levels are 15 parts per billion (ppb) for lead and 1,300 ppb (or 1.3 parts per million, ppm) for copper. If these levels are exceeded, treatment adjustments at the water plant may be required. LWP was not required to sample for lead and copper in 2024. The most recent testing, conducted in 2022, confirmed that none of the regulatory sample sites exceeded action levels for either lead or copper.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. LWP is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time.

Information on lead in drinking water, testing methods and how you can minimize exposure is available from the EPA's Safe Drinking Water Hotline 1 (800) 426-4791 or at [epa.gov/safewater/lead](https://www.epa.gov/safewater/lead).

Per- and Polyfluoroalkyl Substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are manufactured chemicals used in numerous industries since the 1940s for non-stick cookware, water-resistant clothing and firefighting foams. When exposed to high concentrations over time, these chemicals can persist in the environment and the human body, potentially leading to long-term health risks.

The Environmental Protection Agency (EPA) recently introduced the Per- and Polyfluoroalkyl Substances (PFAS) Rule, mandating the monitoring of six PFAS in drinking water. To date, all of Loveland's results show that these six PFAS compounds are absent or not detected in Loveland's drinking water. Additionally, LWP independently and proactively monitors for another 23 PFAS compounds that are not currently regulated by the EPA. Loveland's PFAS data is available upon request.

Loveland's exposure risk to any PFAS compound is considered relatively low, as there are no large industrial users or chemical manufacturers of PFAS in the area. Furthermore, there has been no use of PFAS-containing compounds for fire suppression during any recent forest fires. LWP is working with the United States Geological Survey (USGS) to test for PFAS compounds in the source water. As of the 2024 sampling, no PFAS compounds regulated by the EPA were detected.

LWP will continue testing for PFAS and results will be posted when available at lovelandwaterandpower.org/waterquality. These efforts will enable LWP to effectively mitigate potential PFAS issues and ensure Loveland residents continue to enjoy excellent water quality. For more information on PFAS visit cdphe.colorado.gov/pfas/pfas-health and epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas.

Volatile and Synthetic Organic Compounds (VOCs and SOCs)

Water quality regulators at the state require providers like LWP to test for VOCs every year and SOCs every three years. No contaminants were detected at or above reporting limits in the current testing cycle.

Unregulated Contaminants

The EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) to determine where certain contaminants occur in drinking water and whether they should be considered for regulation in the future. LWP is currently collecting data for the fifth round of the UCMR (UCMR5), which is scheduled for the end of 2024 and through the summer of 2025. The contaminants of concern for the UCMR5 are lithium and 29 individual PFAS compounds. The results for each sample collected in 2024 are absent or non-detect for all contaminants. For the entire list of UCMR5 parameters tested visit epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule#a2.

For more information on the Unregulated Contaminant Monitoring Rule visit epa.gov/dwucmr.

2024 Water Quality Tables

The CDPHE and EPA require LWP to monitor for certain contaminants less than one time per year because the concentrations of these contaminants are not expected to vary significantly from year to year or the system is not considered vulnerable to this type of contamination. Some Loveland data, though representative, may be more than one year old. This report presents the results of our monitoring for the period January 1 to December 31, 2024 unless otherwise noted.

Raw and Finished Water Ratio

Parameter	Year	Average	Range Low-High	Sample Size	Unit of Measure	TT Minimum Ratio	TT Violation	Typical Sources
Total Organic Carbon Ratio	2024	1.57	1.32-1.73	4	Ratio	1.00	No	Naturally present in the environment

Entry Point of the Distribution System

Parameter	Month	Level Found	TT Requirement	TT Violation	Typical Sources
Turbidity	February	Highest single measurement: 0.507 NTU	Maximum 1 NTU for any single measurement	No	Soil Runoff
Turbidity	February	Lowest monthly percentage of samples meeting TT requirement for our technology: 99.43%	In any month, at least 95% of samples must be less than 0.3 NTU	No	Soil Runoff

Parameter	Year	Average	Range Low-High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Barium	2023	0.01	0.01-0.01	1	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	2023	0.66	0.66-0.66	1	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate	2024	0.3	0.3-0.3	1	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Radium, Combined	2020	1.4	1.4-1.4	1	pCi/L	5	0	No	Erosion of natural deposits

Distribution System

Parameter	Month	Results				Number of Samples Below Level		Sample Size	TT Violation	MRDL
Chlorine Residual	December 2024	Lowest period percentage of samples meeting TT requirement: 100%				0		90	No	4.0 ppm

Parameter	Year	Average	Range Low-High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Total Haloacetic Acids (HAA5)	2024	29.21 ^[2]	17.7-45.9	32	ppb	60	N/A	No	Byproduct of drinking water disinfection
Total Trihalomethanes (TTHM)	2024	37.15 ^[2]	23.3-60.1	32	ppb	80	N/A	No	Byproduct of drinking water disinfection
Chlorite	2023	0.02	0-0.06	3	ppb	1	0.8	No	Byproduct of drinking water disinfection

Parameter	Year	Average	Range Low-High	Sample Size	Unit of Measure	Secondary Standard
Sodium ^[1]	2023	15.2	15.2-15.2	1	ppm	N/A
Perfluorobutane Sulfonic Acid (PFBS) ^[1]	2024	0.1	0-0.41	4	N/A	N/A
Perfluorooctanoic Acid (PFOA) ^[1]	2024	0.13	0-0.5	4	N/A	N/A

Parameter	Detected	MCL	MCLG	Sample Size
E. coli	0%	Sample based	0% Present	1116

Regulated at the Consumer's Tap

Parameter	Monitoring Period	90th Percentile	Range Low-High	Sample Size	Unit of Measure	Action Level	Sample Sites Above Action Level	Violation	Typical Sources
Copper	6/7/2022-9/14/2022	0.14	0.0123-0.2471	41	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead	6/7/2022-9/14/2022	1.6	0-3.4	41	ppb	15	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Acronym Definitions

MCL: Maximum Contaminant Level - Sets the highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG: Maximum Contaminant Level Goal - Establishes the level of a contaminant in drinking water, below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL: Maximum Residual Disinfection Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

N/A: Not Applicable

ND: Non Detect - Occurs when a laboratory analysis indicates that the constituent is not present.

NTU: Nephelometric Turbidity Unit - A measure of particles in the water. At 5 NTU, particles are barely visible in a glass of water.

ppb: Parts of contaminant per billion parts of water.

µg/L: Micrograms per liter, equal to ppb

ppm: Parts of contaminant per million parts of water

mg/L: Milligrams per liter, equal to ppm

pCi/L: Picocuries per liter - Measure of the radioactivity in water.

TT: Treatment Technique means a required process intended to reduce the level of a contaminant in drinking water.

Table Footnotes

^[1] Secondary Contaminants - Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor or color) in drinking water.

^[2] Running Annual Average of the removal ratio between raw water Total Organic Carbon (TOC) and the finished water TOC.

Frequently Asked Questions

Do I need a water filtration system?

No. LWP treated water is lead-free and meets or exceeds all state and federal standards. However, if your home has lead pipes or solder, you may wish to install a filtration system to remove lead that meets NSF/ANSI-53 standards. Decisions regarding installing a filtration system, and through which company, are the responsibility of the customer. Filters should be maintained as specified by the manufacturer.

Do I need a water softener?

LWP's water is considered soft in comparison to other water systems. All tap water will have some hardness. Hardness is measured monthly and may be reviewed in the Monthly Drinking Water Analysis on LWP's website, lovelandwaterandpower.org/waterquality. Decisions regarding the installation of a water softener, and through which company, are the responsibility of the customer.

Water has a chlorine smell and/or taste?

Consistent with state and federal regulations, LWP adds chlorine during the water treatment process to disinfect and prevent bacterial growth. To reduce the chlorine taste and/or smell, use a simple point-of-use carbon filter, chill the water or allow the water to sit for a few hours while the chlorine dissipates.

Why is my water discolored?

Water discoloration or turbid water is caused by the stirring of sediment in the water line. Common causes include fire hydrant flushing, firefighting activities, water line breaks or operational maintenance. If you experience staining of laundry due to discolored water, do not let the laundry dry. Wash the laundry using a rust removal product or contact LWP to receive a cleaning product that will remove the stains. Do not use chlorine bleach.

Is there fluoride in my water?

Yes. Fluoride exists naturally in virtually all water supplies and even in various brands of bottled water. As directed by City Council and according to public health guidelines, LWP actively manages fluoride levels in the water. Visit the Centers for Disease Control (CDC) for more information: cdc.gov/fluoridation/index.html

Can I get my water tested?

For additional testing, please contact an independent drinking water laboratory. Decisions regarding whether to perform additional testing, and through which company, are the responsibility of the customer. For a list of private labs certified to test drinking water for lead, please visit cdphe.colorado.gov/dwlabs or contact LWP. Visit lovelandwaterandpower.org/waterquality for results of the monthly Drinking Water Analysis.

Questions about this report or our water?

Contact Tim Bohling, Water Quality Manager, at (970) 962-3479 or by email at Tim.Bohling@cityofloveland.org.

This report and other important information about Loveland Water and Power can be found online at lovelandwaterandpower.org/waterquality.

Para recibir una copia gratuita en español, llame al (970) 962-3000 o envíe un correo electrónico a LWPInfo@cityofloveland.org.

If you know customers that do not have a copy of this report or do not have access to the internet, please share this report with them.

Violations

The City of Loveland is proud to report that in 2024, water provided to the community met or exceeded established state and federal water quality standards.

Loveland Utilities Commission

If you are interested in monthly public meetings, the Loveland Utilities Commission meets monthly at the City of Loveland Service Center. Visit lovelandwaterandpower.org/LUC for schedules and agendas.

Loveland Water and Power

Office

Loveland Service Center
200 North Wilson Avenue
Loveland, CO 80537
Public Water System Identification
Number: CO0135485
Office Hours: 8 a.m. to 5 p.m.
Monday - Friday

Contact Us

(970) 962-3000
LWPInfo@cityofloveland.org
lovelandwaterandpower.org

